Opus Terra™
Optimization & Uncertainty Solutions

Terra 3E SAS

Dominique Guérillot
Jérémie Bruyelle
Outline

- Opus Terra™ toolbox
- Example of Petrel* workflows
 - History Matching
 - Optimization
 - Uncertainties
- PUNQ-S3
 - Presentation
 - Geological description
 - Dynamic data
 - Geological modeling
 - History Matching
 - Prediction
 - Conclusion

* Mark of Schlumberger
Opus Terra™ Toolbox

- At the Interface between Petrel and Eclipse

- To help in:
 - Integrating dynamical data in the geological model
 - History matching
 - Uncertainty assessment of production forecasts
 - Optimization of well placement, perforation locations, flow rates, etc.
Opus Terra™ Toolbox

- Toolbox contains plug-ins for Petrel*
 - Sirenn™: Simulator Reservoir Neural Network
 - Neural networks have been developed to reproduce complex physical phenomena
 - Neural networks are very well adapted to represent nonlinear phenomena
 - Glhis™: Global History Matching (CMA-ES)
 - CMA-ES has been recognized as one of the most powerful continuous optimization algorithms on benchmark problems (Hansen et al., 2010) and real-world problems

- These tools are fully integrated in Petrel*

* Mark of Schlumberger
Sirenn™: Simulator Reservoir Neural Network

- Tool for optimization and uncertainty in Petrel *
- Sirenn = A Neural Network to « Replace » the Reservoir Simulator

- Neural networks have been developed to reproduce complex physical phenomena
 - Aerospace: pilot flight simulation, etc..
 - Defense: missile guidance, etc..

- Neural network design
 - Network architecture
 - Learning base
 - Learning method
Sirenn™: Simulator Reservoir Neural Network

- A neuron

\[y_N = f \left(\theta_0 + \sum_{i=1}^{n_{\text{input}}} w_{iN}x_i \right) \]

- f: transfert function (e.g. sigmoid). The output varies continuously but not linearly as the input changes.

- The creation of a neural network needs to have a learning data
 - Examples as representative as possible of the problem to reproduce

- Learning phase calculate the weight of the network
Sirenn™: Simulator Reservoir Neural Network

- Neural networks are not widely used in reservoir simulation
- Unlike conventional approaches, neural networks
 - Represent and reproduce complex physical phenomena
 - Require a limited number of simulations
- Gives better results than polynomials
- Gives better results than kriging
Sirenn™ : Example

Oil production cumulative

Symbol legend:
- Green square: Eclipse (Data set 1)
- Green inverted triangle: Sirenn (Data set 1)
- Green diamond: Universal kriging proxy (Data set 1)
- Red square: Eclipse (Data set 2)
- Red inverted triangle: Sirenn (Data set 2)
- Red diamond: Universal kriging proxy (Data set 2)
- Blue square: Eclipse (Data set 3)
- Blue inverted triangle: Sirenn (Data set 3)
- Blue diamond: Universal kriging proxy (Data set 3)
Sirenn™: Simulator Reservoir Neural Network

- Sirenn™ is very well adapted to represent nonlinear phenomena

- Sirenn™ allows bypassing time consuming reservoir simulations
 - Inverse problems: History matching - Optimization
 - Sensitivity analysis
 - Uncertainty analysis
Glhis™: Global History Matching

- The CMA-ES (Covariance Matrix Adaptation Evolution Strategy) is an evolutionary algorithm for difficult non-linear non-convex optimization problems.

- Typically applied to optimization problems with a large number of parameters (hundred).

- Should be applied, if derivative based methods, e.g. quasi-Newton BFGS or conjugate gradient, fail due to a rugged search landscape:
 - discontinuities,
 - sharp bends or ridges,
 - noise,
 - local optima, etc.
Glhis™: Global History Matching

- The CMA-ES does not require a tedious parameter tuning for its application
Applications of the CMA-ES

- Well test inversion in fractured porous media
 - Bruyelle, J., Lange, A. - Automated characterization of fracture conductivities from well tests inversion. SPE EUROPEC/ EAGE annual conference and exhibition, SPE 121172 (2009)

- 19 parameters: fracture density, length, aperture, conductivity
Applications of the CMA-ES

Well placement optimization

Fig. 10: Production curves for an optimized solution using CMA-ES with meta-models (optimized config.) and 2 engineer's proposed configurations (config.1 and config.2).
- CMA-ES has been recognized as one of the most powerful continuous optimization algorithms on benchmark problems (Hansen et al., 2010) and real-world problems.

- This method is useful for the problem with many parameters (more than 10) to find an «optimal» answer.
Example of Petrel Workflows – History Matching

1. Create a case with the "Uncertainty & Optimization" process

 2. Select "Optimization" as task

 3. Defined a simulation case

 4. Drop the simulation case in base case

 5. Define parameters that will be modified

 6. Define an objective function with the "Objective Function" process
 Select "History Matching"

 7. Select Gilhis as "Optimizer" algorithm

 8. Option: Select "Use a proxy model" (Siren proxy)

 9. Run the task

 10. Simulation or proxy results

 11. Objective function evaluation satisfying?

 - No

 - Modification of parameters

 - Yes

 12. Optimal model

 13. Uncertainty analysis
Example of Petrel Workflows – Optimization

Create a case with the "Uncertainty & Optimization" process

- Create a case with the "Uncertainty & Optimization" process
 - Select "Optimization" as task
 - Defined a simulation case
 - Drop the simulation case in base case
 - Define parameters that will be modified
 - Define an objective function with the "Objective Function" process
 Select "Production Optimization"
 Select Ghis as "Optimizer" algorithm
 Option: Select "Use a proxy model" (Sirenn proxy)
 Run the task
 Simulation or proxy results
 Objective function evaluation satisfying?
 Yes
 Optimal model
 No
 Modification of parameters
 Simulation or proxy results
 Objective function evaluation satisfying?
 Yes
 Optimal model
 Uncertainty analysis
Example of Petrel Workflows – Uncertainties

Create a case with the "Uncertainty & Optimization" process

- Select "Proxy" as task
- Defined a simulation case
- Drop the simulation case in base case
- Define parameters that will be modified

Select Simann as "Algorithm"

- Select the training data and validation data
- Enter the number of evaluations
- Run the task: the proxy is created in the "Case" pane

Select the data to be simulated from the "Results" pane

Results are plotted (P10, P50, P90, histogram ...)

OpusTerra : Optimization & Uncertainty Solutions
PUNQ-S3

- The PUNQ-S3 case has been taken from a reservoir engineering study on a real field performed by Elf Exploration Production.

- It was qualified as a small-size industrial reservoir engineering model.

- http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/punq-s3model
Layers 1, 3, and 5 have linear streaks of high-porous sands (phi > 20 %), with an azimuth somewhere between 110 and 170 degrees SE. These sand streaks of about 800 m wide are embedded in a low porous shale matrix (phi < 5 %).

In layer 2 marine or lagoonal shales occur, in which distal mouthbar or distal lagoonal delta occur. They translate into a low-porous (phi < 5%), shaly sediment, with some irregular patches of somewhat higher porosity (phi > 5%).

Layer 4 contains mouthbars or lagoonal deltas within lagoonal clays, so a flow unit is expected which consists of an intermediate porosity region (phi ~ 15%) with an approximate lobate shape embedded in a low-porosity matrix (phi < 5%). The lobate shape is usually expressed as an ellipse (ratio of the axes= 3:2) with the longest axis perpendicular to the paleocurrent (which is between 110 and 170 degrees SE).
Expected sedimentary facies with estimates for width and spacing for major flow units for each layer

<table>
<thead>
<tr>
<th>Layer</th>
<th>Facies</th>
<th>Width (m)</th>
<th>Spacing (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel Fill</td>
<td>800</td>
<td>2000 – 5000</td>
</tr>
<tr>
<td>2</td>
<td>Lagoonal Shale</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Channel Fill</td>
<td>1000</td>
<td>2000 – 5000</td>
</tr>
<tr>
<td>4</td>
<td>Mouthbar</td>
<td>500 – 5000</td>
<td>10000</td>
</tr>
<tr>
<td>5</td>
<td>Channel Fill</td>
<td>2000</td>
<td>4000 – 10000</td>
</tr>
</tbody>
</table>
The GM (Geological Model) has:
- 19x28x5=2660 grid blocks,
- with 1761 active

Layer 1, 3 & 5 has two facies:
- An high-porous sands (phi > 20 %);
- A low porous shale matrix (phi < 5 %)
- GM = adaptive channel modeling using the geological description & the hard observed data
Layer 2 has two facies:
- A low porous shaly sediment (phi < 5%);
- A high porous shaly sediment (phi > 5%).
GM = ellipses as body shape modeling using the geological description & the hard observed data.

Layer 4 has two facies:
- An intermediate porosity region (phi ~ 15%);
- A low-porosity matrix (phi < 5%).
GM = ellipses as body shape using the geological description & the hard observed data.
PUNQ-S3 – Geological Modeling

- The uncertain geological parameters of PUNQ-S3 are the porosities, the vertical & horizontal permeabilities

- The parameterization of PUNQ-S3 model is based on the geological description

- The constant properties are estimated for each facies
 - 18 parameters
- Production scheduling inspired by the original model:
 - 1st year = extended well testing
 - Followed by 3 years shut-in period, before field production commences
 - Well testing year consists of 4 three-monthly production periods, each having its own production rate.
 - During field production, two weeks/year used for each well to do a shut-in test to collect shut-in pressure data
 - Wells operate under production constraint. After falling below a limiting bottom hole pressure, they will switch to BHP-constraint.
Data points used in history matching

<table>
<thead>
<tr>
<th>Date</th>
<th>PRO-1</th>
<th>PRO-4</th>
<th>PRO-5</th>
<th>PRO-11</th>
<th>PRO-12</th>
<th>PRO-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BHP</td>
<td>GOR</td>
<td>WC</td>
<td>BHP</td>
<td>GOR</td>
<td>WC</td>
</tr>
<tr>
<td>1.01</td>
<td>224.0</td>
<td>225.2</td>
<td>228.7</td>
<td>219.3</td>
<td>231.0</td>
<td>217.1</td>
</tr>
<tr>
<td>91</td>
<td>211.7</td>
<td>210.6</td>
<td>222.9</td>
<td>202.7</td>
<td>218.7</td>
<td>193.5</td>
</tr>
<tr>
<td>182</td>
<td>215.6</td>
<td>216.6</td>
<td>223.4</td>
<td>208.4</td>
<td>220.8</td>
<td>209.0</td>
</tr>
<tr>
<td>274</td>
<td>219.6</td>
<td>224.4</td>
<td>230.0</td>
<td>219.1</td>
<td>224.7</td>
<td>216.8</td>
</tr>
<tr>
<td>366</td>
<td>226.3</td>
<td>229.5</td>
<td>230.7</td>
<td>228.4</td>
<td>229.8</td>
<td>228.1</td>
</tr>
<tr>
<td>1461</td>
<td>233.2</td>
<td>234.2</td>
<td>235.9</td>
<td>235.3</td>
<td>234.6</td>
<td>234.6</td>
</tr>
<tr>
<td>1642</td>
<td>72.6</td>
<td>82.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1826</td>
<td>201.0</td>
<td>135</td>
<td>190.4</td>
<td>215.7</td>
<td>63.6</td>
<td>203.8</td>
</tr>
<tr>
<td>1840</td>
<td>222.2</td>
<td>224.5</td>
<td>226.5</td>
<td>225.1</td>
<td></td>
<td>225.4</td>
</tr>
<tr>
<td>1841</td>
<td></td>
<td>191.7</td>
<td>165.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2192</td>
<td>190.6</td>
<td>177.7</td>
<td>207.2</td>
<td>62.5</td>
<td>194.4</td>
<td>59.1</td>
</tr>
<tr>
<td>2206</td>
<td>215.4</td>
<td>217.9</td>
<td>220.0</td>
<td>218.8</td>
<td>219.6</td>
<td>217.2</td>
</tr>
<tr>
<td>2373</td>
<td>147.1</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2557</td>
<td>184.4</td>
<td>170.7</td>
<td>202.6</td>
<td>62.5</td>
<td>186.0</td>
<td>62.4</td>
</tr>
<tr>
<td>2571</td>
<td>210.8</td>
<td>213.4</td>
<td>215.7</td>
<td>213.3</td>
<td>215.5</td>
<td>212.2</td>
</tr>
<tr>
<td>2572</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2738</td>
<td>190.1</td>
<td>74.8</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2922</td>
<td>178.5</td>
<td>0</td>
<td>167.8</td>
<td>0</td>
<td>196.4</td>
<td>59.9</td>
</tr>
<tr>
<td>2936</td>
<td>206.1</td>
<td>210.3</td>
<td>212.4</td>
<td>208.9</td>
<td>212.4</td>
<td>208.1</td>
</tr>
</tbody>
</table>

| Sigma | 3 | 34 | 0.2 | 3 | 21 | 0.2 | 3 | 6.2 | 0.2 | 3 | 6.3 | 0.2 | 3 | 7 | 0.2 | 3 | 5.7 | 0.2 |
Objective function

\[
J(\theta) = \sqrt{\sum_{i=1}^{N_w} \sum_{j=1}^{N_{p_i}} \sum_{k=1}^{N_{t_{ij}}} w_{ijk} \left(\frac{D_{ij}(t^k) - S_{ij}(t^k, \theta)}{\sigma_{ij}} \right)^2}
\]

- \(N_w\) is the number of wells
- \(N_{p_i}\) is the number of production data type for the well \(i\)
- \(N_{t_{ij}}\) is the number of production data report times for the well \(i\) and the production data type \(j\).

For a parameter sample \(\theta\), observed data \(D_{ij}(t^k)\) are compared with simulated data \(S_{ij}(t^k, \theta)\) at time step \(t^k\) with
PUNQ-S3 – History Matching

- Sensitivity analysis by variable
 - Equal spacing sampler: 4 simulations by variable = 72 simulations.
PUNQ-S3 – History Matching

- Proxy model of the objective function with Sirenn™
 - Training data
 - Experimental design: Fractionnal factorial sampler: 32 simulations + central point.
 - Simulation performed for sensitivity analysis: 72 simulations

- Minimization of the objective function with Glhis™ using the Sirenn™ proxy
PUNQ-S3 – History Matching

1. Define an objective function with the “Objective Function” process.
2. Select “History Matching” as the process.
3. Select Glhls as the “Optimizer” algorithm.
4. Option: Select “Use a proxy model” (Sirenn proxy).
5. Run the task.
6. Compare simulation or proxy results.
7. Check if the objective function evaluation is satisfying.
 a. If not, modify parameters and repeat.
 b. If yes, the optimal model is selected.
PUNQ-S3 – History Matching Results
PUNQ-S3 – History Matching Results
PUNQ-S3 – History Matching Results

![PRO-15 Bottom hole pressure graph]

Symbol legend
- PUNQS3 HM 184
- Observed HM
- Truth Case
PUNQ-S3 – History Matching Results

PRO-5 Bottom hole pressure

Symbol legend
- PUNQS3 HM 184
- Observed HM
- Truth Case
PUNQ-S3 – History Matching Results

Symbol legend
- PUNQS3 HM 184
- Observed HM
- Truth Case
PUNQ-S3 – History Matching Results

PRO-11 Gas-oil ratio

Symbol legend
- PUNQS3 HM 184
- Observed HM
- Truth Case
The next step consists to predict the ultimate recovery after 16.5 years.

Prediction obtains with 10 different solutions.
PUNQ-S3 - Conclusion

- Opus Terra™ allows to:
 - Build a proxy of the objective function with a minimal number of simulations
 - Perform a global optimization

- The different solutions fit the observed data (Pressure, Water-cut and Gas-oil ratio)

- The predictions of different solutions are very close to the truth case.
Conclusions

- Opus Terra™ plug-ins are fully integrated in Petrel*
 - Complements existing tools in Petrel*
 - Ability to use any Petrel* modeling parameter in the workflow "Uncertainty and Optimization"

- Additional Opus Terra™ modules planned for 2013
 - EnKF, gradient based methods (BFGS ...)
 - Global sensitivity analysis (Sobol, Morris ...)
 - Automatically generated report

- Price: 24,000 $ / year

* Mark of Schlumberger
Useful Links

- **Opus Terra™**
 - Ocean Store: http://www.ocean.slb.com/Pages/Product.aspx?category=all&cat=Ocean&id=POTA-B1
 - Tutorial: http://terra3e.com/Docs/OpusTerra.avi

- **PUNQ-S3:**
 - Imperial College: http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/punq-s3model

- **CMA-ES :**

- **Other products:**
 - VolTerra™: http://www.ocean.slb.com/Pages/Product.aspx?category=all&cat=Ocean&id=PVTE-B1
 - Scenarium™: http://www.ocean.slb.com/Pages/Product.aspx?category=all&cat=Ocean&id=PSCN-B1
 - Sirenn™: http://www.ocean.slb.com/Pages/Product.aspx?category=all&cat=Ocean&id=PSRN-B1
 - Glhis™: http://www.ocean.slb.com/Pages/Product.aspx?category=all&cat=Ocean&id=PGLH-B1
Terra3E

www.Terra3E.com

Dominique Guérillot : dg@terra3e.com
Jérémie Bruyelle : jb@terra3e.com